Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 269
1.
Pak J Pharm Sci ; 37(1): 17-23, 2024 Jan.
Article En | MEDLINE | ID: mdl-38741396

As a major concern in the healthcare sector, polypharmacy is correlated with an increased risk of potential drug-drug interactions (pDDIs), treatment costs and adverse drug reactions (ADR). To assess the prevalence of polypharmacy and its associated factors among postoperative cardiac patients admitted to the National Institute of Cardiovascular Diseases (NICVD), a hospital-based cross-sectional study was conducted between November 2021 and April 2022. Medication charts of postoperative patients were reviewed for medication utilization and polypharmacy. Data was collected using a form approved by the Ethical Review Committee (ERC) regarding patient's clinical and demographic characteristics and medications administered. Statistical analysis was performed using the SPSS software version 25.0. Patients were taking an average of 10.3±1.7 medications. The minimum number of drugs taken per patient was 5, while the maximum was 15 drugs. Only 114 (29.7%) received polypharmacy (5-9 drugs) and hyper-polypharmacy (≥10 drugs) was 270 (70.3%). The mean±SD cardiovascular drugs used were 5.45±1.18 and the mean±SD non-cardiovascular drugs were 4.83±1.18. The prevalence of hyper-polypharmacy suggests a critical need for optimized medication management strategies in this population. Incorporating clinical pharmacists within public healthcare institutions can address polypharmacy-related challenges and enhance medication safety, adherence and patient outcomes.


Pharmacists , Polypharmacy , Humans , Male , Female , Middle Aged , Cross-Sectional Studies , Pakistan , Aged , Adult , Drug Interactions , Pharmacy Service, Hospital , Heart Diseases/surgery , Prevalence
2.
Travel Med Infect Dis ; 59: 102722, 2024.
Article En | MEDLINE | ID: mdl-38642594

BACKGROUND: CCHFV is well recognized as a major public health threat and its prevalence and epidemiological distribution in Pakistan and specifically in KP province is not well documented. METHODS: We used a gold-standard PCR-based diagnostic assay for confirmation of CCHFV among suspected patients. A total of 150 patients were enrolled from June 2022 to September 2022 and their blood samples were collected for PCR confirmation. RESULTS: The overall positivity rate for CCHFV was 26.67 %, with the virus mostly prevalent in the middle-aged group (21-40 years). In the July of 2022, a significant spike in the prevalence of CCHFV was observed in provincial capital Peshawar with the highest burden (31.57 %). CONCLUSION: Our findings indicate the necessity of strengthening CCHFV monitoring programs and intensifying efforts to identify hotspot regions for effective surveillance and control of CCHFV. The months before the Eid-ul-Adha are crucial in the context of CCHFV control.


Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Humans , Pakistan/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/diagnosis , Prevalence , Male , Adult , Female , Middle Aged , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Young Adult , Adolescent , Polymerase Chain Reaction , Child
3.
J Phys Chem Lett ; 15(18): 4880-4889, 2024 May 09.
Article En | MEDLINE | ID: mdl-38682648

Assembling metal nanoclusters (MNCs) to form superstructures generates exciting photophysical properties distinct from those of their discrete precursors. Controlling the assembly process of MNCs and understanding the assembly-disassembly dynamics can have implications in achieving the reversible self-assembly of MNCs. The formation of self-assembled copper nanoclusters (CuNCs) as homogeneous superstructures and the underlying mechanisms governing such a process remain unexplored. Smart molecular imprinting of surface ligands can establish the forces necessary for the formation of such superstructures. Herein, we report highly luminescent, ordered superstructures of 4-phenylimidazole-2-thiol (4-PIT)-protected CuNCs with the help of l-ascorbic acid as a secondary ligand. Through a comprehensive spectroscopic analysis, we deciphered the mechanism of the self-assembly process, where the role of interligand H-bonding and C-H-π interactions was established. Notably, efficient reversibility of assembly-disassembly was demonstrated by re-establishing the interligand interactions and regenerating their photophysical and morphological signatures.

4.
Biochem Pharmacol ; 223: 116126, 2024 May.
Article En | MEDLINE | ID: mdl-38490521

Anastasis cascade including induction of Epithelial to Mesenchymal Transition (EMT), DNA repair, and stimulation of pro-survival mediators collectively exaggerate therapy resistance in cancer prognosis. The extensive implications of DNA-damaging agents are clinically proven futile for the rapid development of disease recurrence during treatment regime. Herein we report a glycosidic derivative of Δ9-tetrahydrocannabinol (THC-9-OG) abrogates sub-toxic doses of 5-Fluorouracil (5FU) induced EMT in colon cancer cells nullifying DNA repairing mechanism. Our in vitro and in vivo data strongly proclaims that THC-9-OG could not only abrogate 5FU mediated background EMT activation through stalling matrix degradation as well as murine 4T1 lung metastasis but also vigorously diminished Rad-51 repairing mediator along with stimulation of γ-H2AX foci formation. The combinatorial treatment (5FU + THC-9-OG) in Apc knockout colorectal carcinoma model conferred remission of the crypt progenitor phenotype which was prominently identified in 5FU treatment. Mechanistically, we demonstrated that 5FU plus THC-9-OG significantly attenuated major EMT inducer Vimentin via extensive ROS generation along with autophagy induction via LC3B I-II conversion and p62 degradation in a p-ATM dependent manner. Additionally, Cannabinoid receptor CB1 was responsible for abrogation of Vimentin since we found increase in the expression of γH2AX and decrease in vimentin expression in CB1 agonist (ACEA) plus 5FU treated cells. Nutshell, our results unveil a new direction of Cannabinoid based combinatorial approach to control background EMT along with robust enhancing of DNA damage potential of sub-toxic concentration of 5FU resulting immense inhibition of distant metastasis coupled with triggering cell death in vitro and in vivo.


Cannabinoids , Humans , Animals , Mice , Fluorouracil/pharmacology , Epithelial-Mesenchymal Transition , Vimentin/genetics , Vimentin/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local , Autophagy , DNA
5.
Clin Med Insights Endocrinol Diabetes ; 17: 11795514241238059, 2024.
Article En | MEDLINE | ID: mdl-38486712

Obesity and diabetes mellitus are prevalent metabolic disorders that have a detrimental impact on overall health. In this regard, there is now a clear link between these metabolic disorders and compromised bone health. Interestingly, both obesity and diabetes lead to elevated risk of bone fracture which is independent of effects on bone mineral density (BMD). In this regard, gastrointestinal (GIT)-derived peptide hormones and their related long-acting analogues, some of which are already clinically approved for diabetes and/or obesity, also seem to possess positive effects on bone remodelling and microarchitecture to reduce bone fracture risk. Specifically, the incretin peptides, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), as well as glucagon-like peptide-2 (GLP-2), exert key direct and/or indirect benefits on bone metabolism. This review aims to provide an initial appraisal of the relationship between obesity, diabetes and bone, with a focus on the positive impact of these GIT-derived peptide hormones for bone health in obesity/diabetes. Brief discussion of related peptides such as parathyroid hormone, leptin, calcitonin and growth hormone is also included. Taken together, drugs engineered to promote GIP, GLP-1 and GLP-2 receptor signalling may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.


Impact of peptides from the gut on bone health in obesity and diabetes mellitus Obesity and related type 2 diabetes (T2D) are prevalent diseases. Unfortunately, there is now a clear link between obesity and related T2D and poor bone health, leading to increased bone fracture risk. However, we know that peptides derived from the gut following a meal can possess positive effects on bone health and reduce bone fracture risk. These peptides are called glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP). Moreover, some of these peptides, GLP-1 and GIP, are already being used to treat obesity and T2D, whilst GLP-2 is used to treat people with short bowel syndrome. In other words, drugs that mimic the action of GLP-1, GLP-2 and GIP are available for human use. This current review article aims to provide an initial appraisal of the relationship between obesity, diabetes and bone health, with a focus on the positive impact of peptide hormones like GLP-1, GLP-2 and GIP for bone health in obesity/diabetes. The take home message is that drugs engineered to promote GIP, GLP-1 and GLP-2 action may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.

6.
PLoS One ; 19(3): e0298196, 2024.
Article En | MEDLINE | ID: mdl-38446760

Amyotrophic lateral sclerosis (ALS) is a fatal human motor neuron disease leading to muscle atrophy and paralysis. Mutations in superoxide dismutase 1 (SOD1) are associated with familial ALS (fALS). The SOD1 mutants in ALS have a toxic-gain of function by destabilizing the functional SOD1 homodimer, consequently inducing fibril-like aggregation with a cytotoxic non-native trimer intermediate. Therefore, reducing SOD1 oligomerization via chemical modulators is an optimal therapy in ALS. Here, we report the discovery of Phialomustin-B, an unsaturated secondary metabolite from the endophytic fungus Phialophora mustea, as a modulator of SOD1 aggregation. The crystal structure of the SOD1-Phialomustin complex refined to 1.90 Å resolution demonstrated for the first time that the ligand binds to the dimer interface and the lateral region near the electrostatic loop. The aggregation analyses of SOD1WT and the disease mutant SOD1A4V revealed that Phialomustin-B reduces cytotoxic trimerization. We propose that Phialomustin-B is a potent lead molecule with therapeutic potential in fALS.


Amyotrophic Lateral Sclerosis , Humans , Superoxide Dismutase-1/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Cytoskeleton , Muscular Atrophy
7.
Neoplasia ; 51: 100989, 2024 05.
Article En | MEDLINE | ID: mdl-38537553

Gene mutations are a source of genetic instability which fuels the progression of cancer. Mutations in BRCA1 and BRCA2 are considered as major drivers in the progression of breast cancer and their detection indispensable for devising therapeutic and management approaches. The current study aims to identify novel pathogenic and recurrent mutations in BRCA1 and BRCA2 in Pakhtun population from the Khyber Pakhtunkhwa. To determine the BRCA1 and BRCA2 pathogenic mutation prevalence in Pakhtun population from KP, whole exome sequencing of 19 patients along with 6 normal FFPE embedded blocks were performed. The pathogenicity of the mutations were determined and they were further correlated with different hormonal, sociogenetic and clinicopathological features. We obtained a total of 10 mutations (5 somatic and 5 germline) in BRCA1 while 27 mutations (24 somatic and 3 germline) for BRCA2. Five and seventeen pathogenic or deleterious mutations were identified in BRCA1 and BRCA2 respectively by examining the mutational spectrum through SIFT, PolyPhen-2 and Mutation Taster. Among the SNVs, BRCA1 p.P824L, BRCA2 p. P153Q, p.I180F, p.D559Y, p.G1529R, p.L1576F, p.E2229K were identified as mutations of the interaction sites as predicted by the deep algorithm based ISPRED-SEQ prediction tool. SAAFEQ-SEQ web-based algorithm was used to calculate the changes in free energy and effect of SNVs on protein stability. All SNVs were found to have a destabilizing effect on the protein. ConSurf database was used to determine the evolutionary conservation scores and nature of the mutated residues. Gromacs 4.5 was used for the molecular simulations. Ramachandran plots were generated using procheck server. STRING and GeneMania was used for prediction of the gene interactions. The highest number of mutations (BRCA1 7/10, 70 %) were on exon 9 and (BRCA2, 11/27; 40 %) were on exon 11. 40 % and 60 % of the BRCA2 mutations were associated Grade 2 and Grade 3 tumors respectively. The present study reveals unique BRCA1 and BRCA2 mutations in Pakhtun population. We further suggest sequencing of the large cohorts for further characterizing the pathogenic mutations.


BRCA1 Protein , BRCA2 Protein , Breast Neoplasms , Female , Humans , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Ethnicity , Genes, BRCA2 , Genetic Predisposition to Disease , Germ-Line Mutation , Mutation , Pakistan/epidemiology , South Asian People/genetics
8.
Physiol Plant ; 176(1): e14206, 2024.
Article En | MEDLINE | ID: mdl-38356346

Aroma or fragrance in rice is a genetically controlled trait; Its high appreciation by consumers increases the rice market price. Previous studies have revealed that the rice aroma is controlled by a specific gene called BETAINE ALDEHYDE DEHYDROGENASE (OsBADH2), and mutation of this gene leads to the accumulation of an aromatic substance 2-acetyl-1-pyrroline (2-AP). The use of genetic engineering to produce aroma in commercial and cultivated hybrids is a contemporary need for molecular breeding. The current study reports the generation of aroma in the three-line hybrid restorer line Shu-Hui-313 (SH313). We created knock-out (KO) lines of OsBADH2 through the CRISPR/Cas9. The analysis of KO lines revealed a significantly increased content of 2AP in the grains compared with the control. However, other phenotypic traits (plant height, seed setting rate, and 1000-grain weight) were significantly decreased. These KO lines were crossed with a non-aromatic three-line hybrid rice male sterile line (Rong-7-A) to produce Rong-7-You-626 (R7Y626), R7Y627 and R7Y628. The measurement of 2-AP revealed significantly increased contents in these cross combinations. We compared the content of 2-AP in tissues at the booting stage. Data revealed that young spike stalk base contained the highest content of 2-AP and can be used for identification (by simple chewing) of aromatic lines under field conditions. In conclusion, our dataset offers a genetic source and illustrates the generation of aroma in non-aromatic hybrids, and outlines a straightforward identification under field conditions.


Betaine/analogs & derivatives , Oryza , Oryza/genetics , CRISPR-Cas Systems/genetics , Odorants , Genes, Plant
9.
Methods ; 223: 26-34, 2024 Mar.
Article En | MEDLINE | ID: mdl-38266951

The fabrication of red fluorescent hybrid mesoporous silica-based nanosensor materials has promised the bioimaging and selective detection of toxic pollutants in aqueous solutions. In this study, we present a hybrid mesoporous silica nanosensor in which the propidium iodide (PI) was used to conveniently integrate into the mesopore walls using bis(trimethoxysilylpropyl silane) precursors. Various characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared (FTIR), N2 adsorption-desorption, zeta potential, particle size analysis, thermogravimetric, and UV-visible analysis were used to analyze the prepared materials. The prepared PI integrated mesoporous silica nanoparticles (PI-MSNs) selective metal ion sensing capabilities were tested with a variety of heavy metal ions (100 mM), including Ni2+, Cd2+, Co2+, Zn2+, Cr3+, Cu2+, Al3+, Mg2+, Hg2+ and Fe3+ ions. Among the investigated metal ions, the prepared PI-MSNs demonstrated selective monitoring of Fe3+ ions with a significant visible colorimetric pink color change into orange and quenching of pink fluorescence in an aqueous suspension. The selective sensing behavior of PI-MSNs might be due to the interaction of Fe3+ ions with the integrated PI functional fluorophore present in the mesopore walls. Therefore, we emphasize that the prepared PI-MSNs could be efficient for selective monitoring of Fe3+ ions in an aqueous solution and in the biological cellular microenvironment.


Metals, Heavy , Nanoparticles , Colorimetry , Silicon Dioxide , Metals, Heavy/analysis , Ions
10.
Indian J Clin Biochem ; 39(1): 47-59, 2024 Jan.
Article En | MEDLINE | ID: mdl-38223000

Meningioma is a common brain tumour which has neither a specific detection nor treatment method. The Sonic hedgehog (Shh) cell signaling pathway is a crucial regulatory pathway of mammalian organogenesis and tumorigenesis including meningioma. Shh cell signalling pathway cascade function by main transcription factor Gli1 and which further regulates in its downstream to Pax6 and Nkx2.2. This current study is aimed to explore the regulation of the Sonic hedgehog-Gli1 cell signaling pathway and its potential downstream targets in meningioma samples. A total of 24 surgically resected meningioma samples were used in this current study.Cytological changes were assessed using electron microscopic techniques as well as hematoxylin & eosin and DAPI staining. The expression pattern of Gli1, Nkx2.2 and Pax6 transcription factors were determined by using immunohistochemistry. The mRNA expression was assessed using RT-qPCR assays. Later, the whole transcriptome analysis of samples was performed with the amploseq technique. Results were compared with those obtained in normal human brain tissue (or normal meninges). Compared to the normal human brain tissue, meningioma samples showed crowded nuclei with morphological changes. Transcription factor Nkx2.2 expressed highly in all samples (24/24, 100%). Twenty-one of the 24 meningiomas (88%) showed high Gli1 and Pax6 expression. Whole transcriptome analysis of two meningioma samples also exhibited a very high increase in Gli1 expression signal in meningioma samples as compare to normal control. Hence, we may conclude that the Shh-Gli1 pathway is aberrantly activated in meningioma cells and is canonically upregulating the expression of transcription factors Pax6 and Nkx2.2. Supplementary Information: The online version contains supplementary material available at 10.1007/s12291-022-01085-1.

11.
Bioorg Chem ; 143: 107030, 2024 Feb.
Article En | MEDLINE | ID: mdl-38091718

Here, we present an interesting, previously unreported method for fractionating a particular class of cannabinoids from the crude leaf extract of Cannabis sativa using HP-20 resins. In this study, we report a novel method of divergent synthesis of fractionated Cannabis sativa extract, which allows the generation of multiple cannabinoids C- and O-glycosides which react with the glycosyl donor 2,3,4,6-tetra-O-acetyl-d-mannosyl trichloroacetimidate (TAMTA) to create eight C- and O-ß-d-cannabinoids glycosides (COCG), which are separated by HPLC and whose structures are characterized by 1D, 2D NMR, and mass spectrometry. These glycosides exhibit improved anti-proliferative and anti-metastatic effects against numerous cancer cell lines in vitro and are more water-soluble and stable than their parent cannabinoids. The in vitro testing of the pure cannabinoids (1-4) and their C- & O-glycosides (1a-4a) and 1b-4b exhibited anti-proliferative and anti-metastatic activities against a panel of eight human cancer cell lines in contrast to their respective parent molecules. Different cancer cell lines' IC50 values varied significantly when their cell viability was compared. In addition to the others, compounds 2a, 3a, 4a, and 2b, 3b were highly potent, with IC50values ranging from 0.74 µM (3a) to 51.40 µM (4a).Although2a(1.42 µM) and3a(0.74 µM) exhibited lower IC50values in the MiaPaca-2 cell line than4a(2.58 µM). But, in addition to the comparable anti-clonogenic activity of4ain MiaPaca-2 and Panc-1 cells, it manifested remarkable anti-invasive activity than either 2a or 3a.In contrast to 2a, 2b, 3a, and 3b and their respective parent compounds,4ahad substantial anti-invasive/anti-metastatic capabilities and possessed anti-proliferative activity.The effects of 4a treatment on MiaPaca-2 and Panc-1 cells include a dose-dependent increase in the expression of E-cadherin and a significant decrease in the expression of Zeb-1, Vimentin, and Snail1. Our results demonstrate that divergent synthesis of fractionated Cannabis sativa extract is a feasible and efficient strategy to produce a library of novel cannabinoid glycosides with improved pharmacological properties and potential anticancer benefits.


Cannabinoids , Cannabis , Neoplasms , Humans , Cannabinoids/pharmacology , Cannabinoids/chemistry , Cannabinoids/metabolism , Cannabis/chemistry , Cannabis/metabolism , Glycosides/pharmacology , Glycosides/metabolism , Magnetic Resonance Spectroscopy , Plant Extracts/chemistry
12.
Int Immunopharmacol ; 126: 111059, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37979450

Koenimbine (1), a carbazole alkaloid isolated from Murraya koenigii, belongs to the Rutaceae family. Various pharmacological effects such as anti-diabetic, melanogenesis inhibition, anti-diarrheal, anti-cancer, and anti-inflammatory properties of koenimbine have already been reported. In the current study, we investigated the anti-inflammatory role of koenimbine (1) and its novel semi-synthetic derivative 8-methoxy-3,3,5-trimethylpyrano[3,2-a] carbazole-11(3H)-yl) (3-(trifluoromethyl) phenyl) methanone (1G) in both in vitro and in vivo biological systems. Our results demonstrated that the anti-inflammatory activity of 1G significantly lowered the production of NO, pro-inflammatory cytokines (IL-6, TNF-α & IL-1ß), LTB4 following LPS stimulation in RAW 264.7 macrophages. Furthermore, 1G significantly attenuated the expression levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner and also decreased the production of reactive oxygen species (ROS) in LPS-activated RAW 264.7 cells. In addition, the oral administration of 1G reduced the inflammatory response in carrageenan-induced paw edema in BALB/C mice. Moreover, it effectively reduced NO, IL-6, IL-1ß & TNF-α levels, liver markers (AST, ALT), and kidney markers (BUN, CRE, and Urea). Also, 1G reverted the infiltration of inflammatory cells and tissue damage in lungs, liver and kidney enhanced the survival rate in LPS-challenged mice. 1G blocks NF-κB p65 from translocating into the nucleus and activating inflammatory gene transcription. These results illustrated that 1G suppresses the inflammatory effects both in-vitro and in-vivo studies via downregulating the nuclear factor kappa-B (NF-κB) signaling pathway. In conclusion, our results demonstrate that semi-synthetic derivative 1G can effectively attenuate the inflammatory response via NF-κB and MAPK signaling pathways; suggesting 1G is a potential novel anti-inflammatory drug candidate in treating inflammatory disorders.


NF-kappa B , Tumor Necrosis Factor-alpha , Mice , Animals , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Lipopolysaccharides , Mice, Inbred BALB C , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Carbazoles , RAW 264.7 Cells , Cyclooxygenase 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism
14.
Rice (N Y) ; 16(1): 57, 2023 Dec 09.
Article En | MEDLINE | ID: mdl-38071259

Chlorophyll degradation is an important physiological process and is essential for plant growth and development. However, how chlorophyll degradation is controlled at the cellular and molecular level remains largely elusive. Pectin is a main component of the primary cell wall, and polygalacturonases (PGs) is a group of pectin-hydrolases that cleaves the pectin backbone and release oligogalacturonide. Whether and how PGs affect chlorophyll degradation metabolism and its association with ethylene (ETH) have not been reported before. Here, we report a novel function of PG in a mutant 'high chlorophyll content1' hcc1, which displayed a decrease in growth and yield. Our morphological, biochemical and genetic analyses of hcc1, knockout lines and complementation lines confirm the function of HCC1 in chlorophyll degradation. In hcc1, the PG activity, ETH content and D-galacturonic acid (D-GA) was significantly decreased and showed an increase in the thickness of the cell wall. Exogenous application of ETH and D-GA can increase ETH content and induce the expression of HCC1, which further can successfully induce the chlorophyll degradation in hcc1. Together, our data demonstrated a novel function of HCC1 in chlorophyll degradation via the ETH pathway.

15.
Cureus ; 15(11): e48994, 2023 Nov.
Article En | MEDLINE | ID: mdl-38111444

BACKGROUND AND AIM: While proton pump inhibitor (PPI) therapy has proven to be effective in managing gastroesophageal reflux disease (GERD), a notable portion of patients who experience GERD symptoms may not respond to this treatment. Research suggests that roughly 30% of individuals with a presumed GERD diagnosis may continue to experience symptoms, whether partially or completely, even when receiving PPI therapy. The aim of this study was to assess the treatment of gastrointestinal diseases with a novel potassium-competitive acid blocker (P-CAB), vonoprazan, in terms of its effectiveness and safety in the Pakistani population. METHODS: This prospective, multicenter, observational study was conducted in Pakistan. This study included 1,642 patients from January 2023 to August 2023, aged 18 years, with gastrointestinal disorders. All demographic data, medical history, GERD severity assessment questionnaire (GerdQ), and laboratory parameters, including stool assessment for Helicobacter pylori (H. pylori), were observed. Patients were orally treated with vonoprazan at doses of 10 mg or 20 mg, once or twice daily. Statistical analysis was done by one-way ANOVA. RESULTS: Out of 1,642 patients, 840 (51.2%) were males and 802 (48.8%) were females, with a mean age of 39.81±14.61 years. The mean GerdQ score at baseline was 20.37±15.87, 7.24±8.15 at the second week of treatment, and 3.70±6.31 at the fourth week of treatment (p<0.001). 90.74% of patients achieved H. pylori eradication. Most patients were acid regurgitation and heartburn-free for >70% of days. Most of the patients, 1,283 (78.13%), exhibited good treatment compliance. Mild adverse events were reported in 37 (2.3%) patients. CONCLUSIONS: The use of vonoprazan significantly reduced the likelihood of GERD by improving symptoms and was also highly effective in the elimination of H. pylori infections. Vonoprazan was generally well tolerated.

16.
Front Plant Sci ; 14: 1286699, 2023.
Article En | MEDLINE | ID: mdl-38023907

A previous metabolomic and genome-wide association analysis of maize screened a glucose-6-phosphate 1-epimerase (ZmG6PE) gene, which responds to low-phosphorus (LP) stress and regulates yield in maize's recombinant inbred lines (RILs). However, the relationship of ZmG6PE with phosphorus and yield remained elusive. This study aimed to elucidate the underlying response mechanism of the ZmG6PE gene to LP stress and its consequential impact on maize yield. The analysis indicated that ZmG6PE required the Aldose_epim conserved domain to maintain enzyme activity and localized in the nucleus and cell membrane. The zmg6pe mutants showed decreased biomass and sugar contents but had increased starch content in leaves under LP stress conditions. Combined transcriptome and metabolome analysis showed that LP stress activated plant immune regulation in response to the LP stress through carbon metabolism, amino acid metabolism, and fatty acid metabolism. Notably, LP stress significantly reduced the synthesis of glucose-1-phosphate, mannose-6-phosphate, and ß-alanine-related metabolites and changed the expression of related genes. ZmG6PE regulates LP stress by mediating the expression of ZmSPX6 and ZmPHT1.13. Overall, this study revealed that ZmG6PE affected the number of grains per ear, ear thickness, and ear weight under LP stress, indicating that ZmG6PE participates in the phosphate signaling pathway and affects maize yield-related traits through balancing carbohydrates homeostasis.

17.
ACS Omega ; 8(45): 43318-43331, 2023 Nov 14.
Article En | MEDLINE | ID: mdl-38024667

Herein, we report the mutational spectrum of three breast cancer candidate genes (TP53, PIK3CA, and PTEN) using WES for identifying potential biomarkers. The WES data were thoroughly analyzed using SAMtools for variant calling and identification of the mutations. Various bioinformatic tools (SIFT, PolyPhen-2, Mutation Taster, ISPRED-SEQ, SAAFEQ-SEQ, ConSurf, PROCHECK etc.) were used to determine the pathogenicity and nature of the SNVs. Selected interaction site (IS) mutations were visualized in PyMOL after building 3D structures in Swiss-Model. Ramachandran plots were generated by using the PROCHECK server. The selected IS mutations were subjected to molecular dynamic simulation (MDS) studies using Gromacs 4.5. STRING and GeneMANIA were used for the prediction of gene-gene interactions and pathways. Our results revealed that the luminal A molecular subtype of the breast cancer was most common, whereas a high percentage of was Her2 negatives. Moreover, the somatic mutations were more common as compared to the germline mutations in TP53, PIK3CA, and PTEN. 20% of the identified mutations are reported for the first time from Khyber Pakhtunkhwa. In the enrolled cohort, 23 mutations were nonsynonymous SNVs. The frequency of mutations was the highest in PIK3CA, followed by TP53 and PTEN. A total of 13 mutations were found to be highly pathogenic. Four novel mutations were identified on PIK3CA and one each on PTEN and TP53. SAAFEQ-SEQ predicted the destabilizing effect for all mutations. ISPRED-SEQ predicted 9 IS mutations (6 on TP53 and 3 on PIK3CA), whereas no IS mutation was predicted on PTEN. The TP53 IS mutations were TP53R43H, TP53Y73X, TP53K93Q, TP53K93R, TP53D149E, and TP53Q199X; whereas for PIK3CA, the IS mutations were PIK3CAL156V, PIK3CAM610K, and PIK3CAH1047R. Analysis from the ConSurf Web server revealed five SNVs with a highly conserved status (conservation score 9) across TP53 and PTEN. TP53P33R was found predominant in the grade 3 tumors, whereas PTENp.C65S was distributed on ER+, ER-, PR+, PR-, Her2+, and Her2- patients. TP53p.P33R mutation was found to be recurring in the 14/19 (73.6%) patients and, therefore, can be considered as a potential biomarker. Finally, these mutations were studied in the context of their potential association with different hormonal and social factors.

18.
Nat Cell Biol ; 25(11): 1691-1703, 2023 Nov.
Article En | MEDLINE | ID: mdl-37845327

Ribosome biogenesis is among the most resource-intensive cellular processes, with ribosomal proteins accounting for up to half of all newly synthesized proteins in eukaryotic cells. During stress, cells shut down ribosome biogenesis in part by halting rRNA synthesis, potentially leading to massive accumulation of aggregation-prone 'orphan' ribosomal proteins (oRPs). Here we show that, during heat shock in yeast and human cells, oRPs accumulate as reversible peri-nucleolar condensates recognized by the Hsp70 co-chaperone Sis1/DnaJB6. oRP condensates are liquid-like in cell-free lysate but solidify upon depletion of Sis1 or inhibition of Hsp70. When cells recover from heat shock, oRP condensates disperse in a Sis1- and Hsp70-dependent manner, and the oRP constituents are incorporated into functional ribosomes in the cytosol, enabling cells to efficiently resume growth. Preserving biomolecules in reversible condensates-like mRNAs in cytosolic stress granules and oRPs at the nucleolar periphery-may be a primary function of the Hsp70 chaperone system.


Ribosomal Proteins , Saccharomyces cerevisiae Proteins , Humans , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Ribosomes/genetics , Ribosomes/metabolism
19.
Int J Biol Macromol ; 253(Pt 6): 127284, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37806415

Soft tissue defects like hernia and post-surgical fistula formation can be resolved with modern biomaterials in the form of meshes without post-operative complications. In the present study hand knitted silk meshes were surface coated with regenerated silk fibroin hydrogel and pure natural extracts. Two phytochemicals (Licorice extract (LE) and Bearberry extract (BE)) and the two honeybee products (royal jelly (RJ) and honey (HE)) were incorporated separately to induce antibacterial, anti-inflammatory, and wound healing ability to the silk hydrogel coated knitted silk meshes. Meshes were dip coated with a blend of 4 % silk hydrogel (w/v) and 5 % extracts. Dried modified meshes were characterized using SEM, DMA, GC-MS and FTIR. Antimicrobial testing, in-vitro cytotoxicity, in-vitro wound healing and Q-RT-PCR were also performed. SEM analysis concluded that presence of coating reduced the pore size up to 47.7 % whereas, fiber diameter was increased up to 17.9 % as compared to the control. The presence of coating on the mesh improved the mechanical strength/Young's modulus by 1602.8 %, UTS by 451.7 % and reduced the % strain by 51.12 %. Sustained release of extracts from MHRJ (62.9 % up to 72 h) confirmed that it can induce antibacterial activity against surgical infections. Cytocompatibility testing and gene expression results suggest that out of four variables MHRJ presented best cell viability, % wound closure and expression of wound healing marker genes. In-vivo analyses in rat hernia model were carried out using only MHRJ variant, which also confirmed the non- toxic nature and wound healing characteristics of the modified mesh. The improved cell proliferation and activated wound healing in vitro and in vivo suggested that MHRJ could be a valuable candidate to promote cell infiltration and activate soft tissue and hernia repair as a biomedical implant.


Fibroins , Silk , Rats , Animals , Silk/chemistry , Hydrogels/chemistry , Fibroins/chemistry , Hernia , Anti-Bacterial Agents
20.
Molecules ; 28(20)2023 Oct 18.
Article En | MEDLINE | ID: mdl-37894629

Phytochemicals are plant secondary metabolites that show health benefits for humans due to their bioactivity. There is a huge variety of phytochemicals that have already been identified, and these compounds can act as antimicrobial and neuroprotection agents. Due to their anti-microbial activity and neuroprotection, several phytochemicals might have the potency to be used as natural therapeutic agents, especially for Helicobacter pylori infection and neurodegenerative disease, which have become a global health concern nowadays. According to previous research, there are some connections between H. pylori infection and neurodegenerative diseases, especially Alzheimer's disease. Hence, this comprehensive review examines different kinds of phytochemicals from natural sources as potential therapeutic agents to reduce H. pylori infection and improve neurodegenerative disease. An additional large-scale study is needed to establish the connection between H. pylori infection and neurodegenerative disease and how phytochemicals could improve this condition.


Helicobacter Infections , Helicobacter pylori , Neurodegenerative Diseases , Neuroprotective Agents , Humans , Helicobacter Infections/drug therapy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
...